Journal of Organometallic Chemistry, 365 (1989) 11–18 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09604

Synthesis and molecular structure of $CH_3\{2,6-[(C_2H_5)_2NCH_2]_2C_6H_3\}$ InCl, an intramolecular stabilized monomeric diorganoindium chloride *

Herbert Schumann*, Wilfried Wassermann **,*** and Andreas Dietrich **

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12 (Federal Republic of Germany)

(Received July 25th, 1988)

Abstract

InCl₃ reacts with 2,6-[(CH₃)₂NCH₂]₂C₆H₃Li in hexane to yield 2,6-[(CH₃)₂NCH₂]₂C₆H₃InCl₂ (1). The treatment of CH₃InCl₂ with 2,6-[(C₂H₅)₂-NCH₂]₂C₆H₃Li affords CH₃{2,6-[(C₂H₅)₂NCH₂]₂C₆H₃}InCl (2). Both compounds have been characterized by elemental analyses, ¹H NMR, ¹³C NMR and mass spectra. 2 crystallizes monoclinic in the space group $P2_1/n$. The unit cell parameters are a 1090.2(1), b 1354.0(2), c 1300.0(2) pm, α 99.99(1)° and V 1.8899 × 10⁶ pm³ with a final R value of 0.049 for all 4055 independent reflections.

Introduction

Trimethylindium, the commonly used In source for the production of III–V semiconductor layers by organometallic vapor phase epitaxy [1], is air sensitive because of its coordinative unsaturation. The results presented here were obtained in connection with our investigations to increase the air stability of organoindium compounds via intramolecular base stabilization. Several organoindium (III) derivatives containing $2-(CH_3)_2NCH_2C_6H_4$ or $CH_3)_2NCH(CH_3)C_6H_4$ as ligands have been prepared recently and have been studied by NMR spectroscopy [2,3]. The crystal structure of $[2-(CH_3)_2NCH_2C_6H_4]_2InCl$ reveals that both nitrogen atoms coordinate the metal center and occupy the axial positions in the bipyramidal molecule [4].

^{*} In memoriam Professor Dr. Jerold J. Zuckerman.

^{**} Formerly at the University of Oklahoma, Norman, Oklahoma (U.S.A.).

^{***} Former member of the research group of Prof. Dr. J.J. Zuckerman at the University of Oklahoma (U.S.A.).

We now report on the synthesis of two organoindium compounds containing the tridentate $2,6-(R_2NCH_2)_2C_6H_3$ group ($R = CH_3$, C_2H_5) as a ligand. Both compounds have been characterized by elemental analyses, ¹H NMR, ¹³C NMR and mass spectra.

Results and discussion

Indium trichloride reacts in hexane with 2,6-bis(dimethylaminomethylene)phenyllithium to form 2,6-bis(dimethylaminomethylene)phenylindium dichloride (1). The reaction between methylindium dichloride and 2,6-bis(diethylaminomethylene)phenyllithium, conducted under the same conditions, affords 2,6-bis(diethylaminomethylene)phenyl(methyl)indium chloride (2).

The compounds are colorless solids, melting at 108–110 °C or 52–54 °C, respectively. The ¹H NMR as well as the ¹³C NMR spectra of the compounds, recorded in C_6D_6 , show the expected results. The assigned values are listed in Table 1.

The indium nucleus has a spin of 9/2. The NMR resonances of carbon atoms bound to indium are thus expected to be broadened and of low intensity. The CH₃-In carbon atom in 2 in fact shows a broad signal at -9.3 ppm with a half-width of 8 Hz, as compared to normally about 1.5 Hz, and an intensity of only about 10% of that of a CH₃ group bound to another carbon atom. Since the ring carbon atom C1 of the ligand system, which is directly bound to indium, does not show an intensity enhancement in the broadband decoupled ¹³C NMR due to the Nuclear Overhauser Effect, whereas H bearing carbons do, this signal for C1 is further diminished and could therefore not be detected.

The molecular structure of 2 has been determined by X-ray diffraction (Table 2, Fig. 1). The crystal packing consists of discrete monomeric units with the short distance of 296 pm between chlorine and a hydrogen atom of the CH_3 -In group being the only unusual intermolecular contact (max. sum of Van der Waals radii

	1	2	
¹ H NMR in $C_6 D_6$, in ppn	n relative to $Si(CH_3)_4$		
$\delta(CH_3CH_2N)$	_	0.85(t)	
$\delta(CH_3CH_2N)$	_	2.59(q)	
δ(CH ₃ N)	2.20(s)	_	
$\delta(NCH_2C_6H_3)$	3.05(s)	3.51(s)	
$\delta(C_6H_3)$	6.77-7.16(m)	7.00-7.42(m)	
$\delta(CH_3In)$	-	0.06(s)	
¹³ C-NMR in C_6D_6 , in pp	m relative to $Si(CH_3)_4$		
$\delta(CH_3CH_2N)$	_	8.7	
$\delta(CH_3CH_2N)$	_	44.1	
$\delta(CH_3N)$	45.6	_	
$\delta(NCH_2C_6H_3)$	63.6	60.2	
δ(C1)	not observed	not observed	
δ(C2,6)	143.6	1 45.0	
δ(C3,5)	125.6	124.4	
δ(C4)	129.9	126.7	
δ(CH ₃ In)		-9.3	

Table 1 ¹H NMR and ¹³C NMR data of 1 and 2

310 pm) [5]. The atom numbering is shown in Fig. 1, bond distances and bond angles are given in Tables 3 and 4, respectively.

The molecule exhibits distorted trigonal-bipyramidal geometry with the chlorine and the two carbon atoms bound to indium in equatorial and the nitrogen atoms in-

Table 2

Final atomic coordinates for 2 with estimated standard deviations in parentheses and equivalent isotropic thermal parameters $(Å^2)$

Atom	x/a	y/b	z/c	Beq	_
In	0.36989(3)	0.46814(2)	0.22136(2)	1.34	
Cl	0.2938(1)	0.3552(1)	0.0852(1)	3.45	
N1	0.5936(3)	0.3999(3)	0.2839(3)	1.22	
N2	0.1505(3)	0.4928(2)	0.2714(3)	1.32	
C1	0.4153(5)	0.6171(4)	0.1817(4)	1.84	
C2	0.4849(4)	0.3744(3)	0.4344(3)	1.25	
C3	0.3725(4)	0.4007(3)	0.3720(3)	1.15	
C4	0.2606(4)	0.3762(3)	0.4030(3)	1.49	
C5	0.2611(4)	0.3244(3)	0.4972(3)	1.71	
C6	0.3741(4)	0.2987(3)	0.5582(4)	1.72	
C7	0.4854(4)	0.3227(3)	0.5270(3)	1.57	
C8	0.6034(4)	0.4068(4)	0.3993(3)	1.43	
C9	0.6932(4)	0.4573(4)	0.2493(3)	1.77	
C10	0.6871(5)	0.4562(4)	0.1315(4)	2.23	
C11	0.5922(4)	0.2951(3)	0.2503(3)	1.54	
C12	0.7066(5)	0.2339(4)	0.2933(4)	2.23	
C13	0.1400(4)	0.3996(3)	0.3292(3)	1. 46	
C14	0.1666(4)	0.5793(3)	0.3413(3)	1. 42	
C15	0.0736(4)	0.5914(4)	0.4143(4)	2.16	
C16	0.0429(4)	0.5037(3)	0.1849(3)	1.81	
C17	0.0616(4)	0.5812(4)	0.1057(3)	1.96	

Fig. 1. ORTEP drawing [27] of 2 with 50 % probability ellipsoid for all atoms other than hydrogen. Hydrogens drawn for clarity with arbitrary radius.

axial position. The maximum deviation from the equatorial least-squares plane of In, C1, C3 and Cl is 2.7(3) pm for In. The considerable distortion of the metal coordination from the ideal trigonal-bipyramidal symmetry is caused by the geometry of the ligand. The bond angle N1-In-N2 (144.9(1)°) is significantly smaller than the respective angle in $[2-(CH_3)_2NCH_2C_6H_4]_2InCl (178.4(1)°)$ [4].

It is known that InL_3 (L = monodentate organic or inorganic ligand) forms stable adducts with nucleophiles like Et_2O , NR₃, HNR₂ and H₂NR [6]. The observed intramolecular N-In-N coordination in 2 emphasizes the acceptor beha-

Table 3					
Final non-hydrogen	bond distances	(pm) in 2 with	estimated standard	deviations in r	oarentheses

Atoms	Distance	Atoms	Distance	
In-Cl	237.7(1)	C2-C7	139.2(6)	
In–N1	260.3(3)	C2-C8	150.9(6)	
In-N2	260.7(3)	C3-C4	139.0(6)	
In-C1	216.0(5)	C4_C5	141.0(6)	
In-C3	215.6(4)	C4-C13	152.1(6)	
N1-C8	148.9(5)	C5-C6	138.9(6)	
N1-C9	146.8(6)	C6–C7	138.3(7)	
N1-C11	148.4(5)	C9-C10	152.1(7)	
N2-C13	148.4(5)	C11-C12	152.0(6)	
N2-C14	147.3(5)	C14-C15	151.4(7)	
N2-C16	148.6(5)	C16-C17	150.9(7)	
C2-C3	139.3(5)			

- . .

Atoms	Angle	Atoms	Angle
C1-In-Cl	119.2(1)	C7-C6-C5	120.7(4)
C3–In–Cl	110.6(1)	C6-C7-C2	120.0(4)
C3-In-C1	130.1(2)	N1-C8-C2	111.8(3)
N1–In–Cl	101.0(1)	C8-N1-In	101.1(2)
N1-In-C1	99.5(2)	C9-N1-In	114.8(3)
N1–In–C3	72.7(1)	C9-N1-C8	110.3(3)
N2-In-Cl	93.0(1)	C11–N1–In	106.7(2)
N2-In-C1	101.4(2)	C11-N1-C8	110.6(3)
N2–In–C3	72.3(1)	C11-N1-C9	112.8(4)
N2–In–N1	144.9(1)	C10-C9-N1	113.5(4)
C7C2C3	120.2(4)	C12-C11-N1	116.6(3)
C8-C2-C3	117.5(4)	N2-C13-C4	111.2(3)
C8-C2-C7	122.2(4)	C13–N2–In	99.9(2)
C2-C3-In	120.6(3)	C14–N2–In	103.8(2)
C4-C3-In	119.4(3)	C14-N2-C13	112.1(3)
C4-C3-C2	119.8(4)	C16-N2-In	117.5(3)
C5-C4-C3	120.0(4)	C16-N2-C13	110.3(3)
C13-C4-C3	118.3(4)	C16-N2-C14	112.5(3)
C13-C4-C5	121.6(4)	C15-C14-N2	116.8(4)
C6-C5-C4	119.3(4)	C17-C16-N2	113.8(3)

Selected non-hydrogen bond angles (°) in 2 with estimated st	tandard deviations in parenthes
--	---------------------------------

Table 4

vior of indium. The In–N distances are 260.3(3) and 260.7(3) pm, thus being longer than the sum of their covalent radii (219 pm) but significantly shorter than the sum of their Van der Waals radii (345 pm). Comparetively long In–N distances are reported for CH₃In[CH₃NC(CH)₄N]₂ (213.8(5) pm) [7], [(CH₃)₂In]₂C₂(NCH₃)₄ (218.3(5) pm) [8], CH₃In{[CH₃(CH₂)₂NCH₃]In(CH₃)₂} (218.7(13) pm) [7], methyl(tetraphenylporphinato)indium(III) (220(1) pm) [9], CH₃InCl₂ · t-C₄H₉NH₂ (221(1) pm) [10], (CH₃)₂InN(CH₃)₂ (223(1) pm) [11], C₂H₅InBr₂ · [(CH₃)₂NCH₂-CH₂N(CH₃)₂] (230(1) and 249(1) pm) [12] and C₂H₅InI₂ · [(CH₃)₂NCH₂CH₂N·(CH₃)₂] (233(1) and 244(1) pm) [12]. In the case of **2**, the ligand constraint prevents the nitrogens from moving closer to the metal center.

The dihedral angles C3-C2-C8-N1 (38.4(5)°) and C3-C4-C13-N2 (35.3(5)°) show out of plane bending of both nitrogens. N1 resides 75.6(3) pm below, N2 60.6(3) pm above the phenyl plane. The twist, most probably due to the coordination forces, affects carbon atoms C8 and C13, which bend away from the phenyl plane. The deviation is reflected in the dihedral angles C6-C7-C2-C8 (177.0(4)°) and C6-C5-C4-C13 (175.4(4)°).

The geometry of Cl, C1 and C3 around the indium center is not ideally trigonal. The bond angles C1–In–Cl, C3–In–Cl and C1–In–C3 are 119.2(1), 110.6(1) and 130.1(2)°. A similar lack of symmetry is reported for $[2-(CH_3)_2NCH_2C_6H_4]_2InCl$ (the respective angles are 102.9(1), 103.7(1) and 153.3(1)°) [4] and for $CH_3InCl_2 \cdot$ t-C₄H₉NH₂ (Cl1–In–Cl 2 100.5(1)°, Cl1–In–C 115.9(3)° and Cl 2–In–C 119.8(3)°) [10]. A comparison of the C–In–C bond angle in **2** with values reported for In(CH₃)₃ (almost 120°) [13], In(C₅H₅)₃ (110.2(4), 117.7(4) and 118.7(3)°) [14], In(C₆H₅)₃ (121.6(3) and 116.8(6)°) [15] and for Na[In(C₆H₅)₄] (110.2(3) and 108.1(3)°) [16] shows it to be significantly increased. We assume that the nitrogen coordination forces the methyl group to bend away from the phenyl ring leading to shortest non-bonding distances N2-H(C1) of 340(1) and 370(1) pm. A similar effect will cause a bending of the chlorine away from the phenyl ring resulting in a non-bonding distance Cl-N1 of 384.6(3) pm. The smaller C-In-Cl angles in $[2-(CH_3)_2NCH_2C_6H_4]_2InCl (102.9(1)^\circ$ and $103.7(1)^\circ$) support this theory.

The bite angle C3–In–N1 (72.7(1)°) and C3–In–N2 (72.3(1)°) belong to the smallest cited in the literature [4]. The In–Cl distance of 237.7(1) pm is in agreement with reported literature values for indium(III) chlorides. The longest distances are found in inorganic compounds like $InCl_5^{2-}$ (241.5(1.2), 245.6(7) pm) [17], $[InCl_4(H_2O)_2]^-$ (248.5(2), 243.3(3), 241.7(3) pm) [18]. Neutral adducts like $InCl_3$ · PPh₃ show similar In–Cl distances (237.7(5), 238.2(5) and 239.1(5) pm) [19]. In–Cl distances reported for organoindium compounds are 238.4(1) and 240.0(1) pm for $(CH_3InCl_2)_2$ [20], 240.5(2) and 239.3(2) pm for $CH_3InCl_2 \cdot t-C_4H_9NH_2$ [10].

The In– C_{alkyl} and In– C_{aryl} bond lengths (216.0(5) pm and 215.6(4) pm) are within the sum of the covalent radii (221 pm). The observed In– C_{alkyl} distance compares well with the respective values of In(CH₃)₃ (215(4), 212(4), 206(4) pm) [13], (CH₃)₂InN(CH₃)₂ (217(2) pm) [11], (CH₃)₂InCl (218(1) pm), methyl(tetraphenylporphinato)indium(III) (213(1) pm) [9], CH₃InCl₂ · t-C₄H₉NH₂ (214(1) pm) [10], bis(μ -4-methylpiperazino-N)tetramethyldiindium(III) (216.1(6), 216.3(6) pm), methylbis[methyl(2-pyridyl)amido-N, N']indium(III) (213.7(7) pm), CH₃In{[CH₃-N(CH₂)₂NCH₃]In(CH₃)₂ } (218.7(1.3), 219.8(1.5), 218.2(1.3) pm) [7], and [(CH₃)₂-In]₂C₂(NCH₃)₄ (218.2(6), 217.3(6), 216.5(5), 218.1(6) pm) [8]. In^{III}–C_{aryl} distances in [2-(CH₃)₂NCH₂C₆H₄]₂InCl (214.4(3), 215.4(3) pm) [4], in In(C₆H₅)₃ (211.1(1.4), 215.5(1.4) pm) [15], in Na[In(C₆H₅)₄] (223.0(3) pm) [16] and in In(C₅H₅)₃ (223.7(9), 224.3(9), 237.4(7) and 246.6(8) pm) [14] are in good agreement with the respective values of **2**.

Experimental

All reactions were carried out under an atmosphere of dry oxygen-free argon, in solvents which were dried and distilled under argon before use. $(CH_3)InCl_2$ [21] and 2,6-[$(CH_3)_2NCH_2$]₂C₆H₃Li [22] were prepared according to literature procedures. 2,6-[$(C_2H_5)_2NCH_2$]₂C₆H₃Br was prepared from 2,6-(BrCH₂)₂C₆H₃Br [23] and (C₂H₅)₂NH in C₆H₆. ¹H and ¹³C NMR spectra were recorded on a Bruker WP 80-FT spectrometer at 80 MHz and 20.15 MHz, respectively, and the mass spectra on a Varian MAT 311 mass spectrometer. For the CHN analyses a Perkin–Elmer elemental analyzer 240C was used.

2,6-Bis(dimethylaminomethylene)phenylindium dichloride (1)

The respective lithium reagent, prepared from 1.72 g (6.3 mmol) 2,6- $[(CH_3)_2NCH_2]_2C_6H_3Br$ and 3.96 ml n-butyllithium (1.6 mol/l in hexane) in 30 ml hexane, was added dropwise to a stirred suspension of 1.4 g (6.3 mmol) InCl₃ in 30 ml hexane. After stirring for 12 h, the solvent was removed and the product sublimed at 100 °C in vacuo onto a cold finger (15 °C). Yield: 1.51 g (63%) colorless solid, m.p. 108–110 °C. Found: C, 38.86; H, 5.08; N, 7.61. $C_{12}H_{19}Cl_2InN_2$ calcd.: C, 38.23; H, 5.08; N, 7.43%.

{2,6-Bis(diethylaminomethylene)phenyl}methylindium chloride (2)

The reaction mixture obtained after the addition of 9.4 mmol of the lithium reagent in hexane to 1.89 g (9.4 mmol) CH_3InCl_2 was refluxed for 4 h, filtered and the solvent removed in vacuo. Distillation yielded an orange oil (b.p. 160°C/0.1 mbar), which was crystallized from hexane. Yield: 2.15 g (55%) colorless crystals, m.p. 52–54°C. Found: C, 49.67; H, 7.28; N, 7.01. $C_{17}H_{30}ClInN_2$ calcd.: C, 49.47; H, 7.33; N, 6.79%. MS: 412 (molecular ion, 3.2%), 397($M - CH_3$, 2.8%), 377(M - Cl, 92.6%), 115 (In, 100%).

X-ray structure analysis

2 crystallizes as white parallelepipeds, monoclinic, crystal dimensions 0.43×0.65 $\times 0.40 \text{ mm}^3$; $P2_1/n$ from intensity statistics and structure refinement, cell parameters from 52 reflections (2 θ range 40–53°), Mo- K_{α} radiation (graphite monochromator), 4472 unique reflections, intensities of all reflections with $1^{\circ} \le 2\theta \le 54^{\circ}$ measured at 140(5) K, $-14 \le h \le 14$, $-17 \le k \le 0$, $0 \le l \le 16$, $\theta - 2\theta$ scan technique, variable scan width $(0.95 + 0.34 \tan \theta)^{\circ}$, variable horizontal receiving aperture 2.60 mm; three standard reflections measured every 1.5 h of X-ray exposure time, maximal fluctuation 1.3%, three orientation control reflections measured every 125 data, computation of a new orientation matrix from a list of 25 reflections if angular change in control reflections was more than 0.1° ; 125 h of total exposure time; decay correction applied, Lorentz and polarization correction, empirical absorption correction (μ 12.72 cm⁻¹, psi scan method, max. transition 99.7% min. transition 86.5%), 4055 observed data (all F_0); structure determined by Patterson method and succesive difference Fourier syntheses; refinement by block-diagonal least squares in which the quantity $\sum w(|F_0| - |F_c|)^2$ was minimized; non-hydrogen atoms refined anisotropically, hydrogen atoms located and refined isotropically, final R = 0.049, $R_w = 0.040$ for 310 parameters and 4055 reflections (all F_0), maximum ratio of shift to error (Δ/σ) in final difference Fourier map 0.029, maximum electron density 1.64 e $Å^{-3}$ around In position.

All X-ray measurements on an Enraf-Nonius CAD-4 automatic diffractometer fitted with a liquid-nitrogen low temperature set-up; scattering factors for H from Stewart, Davidson and Simpson [24], scattering factors and anomalous dispersion terms for C, N, Cl and In from International Tables for X-Ray Crystallography [25]; all calculations with SHELX76 [26]. The final atomic and thermal parameters are given in Table 2.

Details of the crystal structure determination of 2 have been deposited with the Fachinformationszentrum Energie, Physik, Mathematik, D-5714 Eggenstein, Leopoldshafen 2 and can be obtained by quoting the journal, authors and file number CSD 53651.

Acknowledgements

We thank the Fonds der Chemischen Industrie for generous support as well as the E. Merck GmbH, Darmstadt, for valuable chemicals. Special grants were received from NATO and in connection with the exchange program Technische Universität Berlin/The University of Oklahoma.

References

- J.P. Mullin, S.J.C. Irvine, R.H. Moss, P.N. Robson, D.R. Wright (Eds.), Proc. 2nd Intern. Conf. Metalorg. Vapor Epitaxy, Sheffield, 1984, J. Cryst. Growth, 68 (1984) 1. G.B. Springfield (Ed.), Proc. 3rd Intern. Conf. Metalorg. Vapor Phase Epitaxy, Universal City, CA, 1986, J. Cryst. Growth, 77 (1986) 1.
- 2 J.T.B.H. Jastrzebski, G. van Koten, D.G. Tuck, H.A. Meinema, J.G. Noltes, Organometallics, 1 (1982) 1492.
- 3 R.S. Steevensz, D.G. Tuck, H.A. Meinema, J.G. Noltes, Can. J. Chem., 63 (1985) 755.
- 4 M. Khan, R.C. Steevensz, D.G. Tuck, J.G. Noltes, P.W.R. Corfield, Inorg. Chem., 19 (1980) 3407.
- 5 A. Bondi, J. Phys. Chem., 68 (1964) 441.
- 6 D.G. Tuck, in: G. Wilkinson, (Ed.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1983, Vol. 1 p. 683.
- 7 A.M. Arif, D.C. Bradley, H. Dawes, D.M. Frigo, M.B. Hursthouse, B. Hussain, J. Chem. Soc. Dalton Trans., (1987) 2159.
- 8 F. Gerstner, W. Schwarz, H.-D. Hausen, J. Weidlein, J. Organomet. Chem., 175 (1979) 33.
- 9 C. Lecomte, J. Protas, P. Cocolios, R. Guilard, Acta. Cryst., B 36 (1980) 2769.
- 10 M. Veith, O. Recktenwald, J. Organomet. Chem., 264 (1984) 19.
- 11 K. Mertz, W. Schwarz, B. Eberwein, J. Weidlein, H. Hess, H.D. Hausen, Z. Anorg. Allg. Chem., 429 (1977) 99.
- 12 M.A. Khan, C. Peppe, D.G. Tuck, J. Organomet. Chem. 280 (1985) 17.
- 13 E.L. Amma, R.E. Rundle, J. Am. Chem. Soc., 80 (1958) 4141.
- 14 F.W.B. Einstein, M.M. Gilbert, D.G. Tuck, Inorg. Chem., 11 (1972) 2832.
- 15 J.F. Malone, W.S. McDonald, J. Chem. Soc. A, (1970) 3362.
- 16 K. Hoffmann, E. Weiss, J. Organomet. Chem., 50 (1973) 25.
- 17 D.S. Brown, F.W.B. Einstein, D.G. Tuck, Inorg. Chem., 8 (1969) 14.
- 18 M.L. Ziegler, H.V. Schlimper, B. Nuber, J. Weiss, G.Z. Ertl, Z. Anorg. Allg. Chem., 415 (1975) 193.
- 19 M.V. Veidis, G.J. Palenik, J. Chem. Soc. D, (1969) 586.
- 20 K. Mertz, W. Schwartz, F. Zettler, H.D. Hausen, Z. Naturforsch., B: Anorg. Chem., Org. Chem., 30B (1975) 159.
- 21 H.C. Clark, A.L. Pickard, J. Organomet. Chem., 13 (1968) 61.
- 22 G. van Koten, J.T.B.H. Jastrzebski, J.G. Noltes, A.L. Spek, J.C. Schoone, J. Organomet. Chem., 148 (1978) 233.
- 23 F. Vögtle, Chem. Ber., 102 (1969) 1784.
- 24 R.F. Stewart, E.R. Davidson, W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.
- 25 "International Tables for X-Ray Crystallography"; 1974, Vol. IV, pp. 99 and 149 Kynoch Press, Birmingham, England.
- 26 G.M. Sheldrick, 1976, SHELX76, Program for crystal structure determination. University of Cambridge, England.
- 27 C.K. Johnson, (1965) ORTEP, Report ORNL-3794; Oak Ridge National Laboratory, Tennessee, U.S.A.